کاربرد شبکه های عصبی مصنوعی و gis در تخمین پارامترهای موثر در تعیین الگوی کشت (مطالعه موردی : شهرستان نهاوند)
Authors
abstract
چکیده یکی از مهمترین مسایل پیش روی کشاورزی فاریاب، تدوین الگوی کشت بهینه می باشد. در این راستا تخمین پارامترهای موثر بر کمیت و کیفیت آب قابل دسترس به عنوان یکی از مولفههای حایز اهمیت در اتخاذ تصمیمات مدیریتی در پیشرفت و توسعه کشاورزی پایدار امری ضروری است. در این مطالعه از تکنیک شبکههای عصبی مصنوعی برای تخمین سطح آب چاههای پیزومتری و همچنین عوامل موثر بر کیفیت آب (ec , sar) مورد استفاده برای کشاورزی بهره گرفته شده است. بدین منظور از داده های ماهانه برداشت شده سطح آب چاه های پیزومتری در طی 7 سال و داده های مربوط به کیفیت آب در طول 4 سال در دشت نهاوند استفاده شد. همچنین تراز سطح آب زیر زمینی شهرستان نهاوند در سال86-1385با استفاده از سامانه اطلاعات مکانی ترسیم شد. کارایی مدل توسط معیارهای آماری شامل ضریب تعیین (r2) ، ریشة مربع میانگین خطا(rmse) و میانگین قدرمطلق خطا (mae) مورد ارزیابی قرار گرفت. نتایج برآمده نشان داد که ضریب r2برای تخمین سطح آب چاه های پیزومتری برابر 98/0 و برای sarو ec بهترتیب برابر با 991/0 و 990/0 بودند. نتایج فوق بیانگر توانایی مناسب شبکههای عصبی مصنوعی بهعنوان تکنیکی برتر برای شبیه سازی پارامترهای کمی وکیفی موثر در تعیین الگوی کشت بود. همچنین نتایج حاصل از ترسیم مکانی سطح آب زیرزمینی توسط سامانه اطلاعات جغرافیایی حاکی از کمبود منابع آبهای زیر سطحی در این منطقه بود .
similar resources
کاربرد شبکه های عصبی مصنوعی و GIS در تخمین پارامترهای موثر در تعیین الگوی کشت (مطالعه موردی : شهرستان نهاوند)
چکیده یکی از مهمترین مسایل پیش روی کشاورزی فاریاب، تدوین الگوی کشت بهینه می باشد. در این راستا تخمین پارامترهای موثر بر کمیت و کیفیت آب قابل دسترس به عنوان یکی از مولفههای حایز اهمیت در اتخاذ تصمیمات مدیریتی در پیشرفت و توسعه کشاورزی پایدار امری ضروری است. در این مطالعه از تکنیک شبکههای عصبی مصنوعی برای تخمین سطح آب چاههای پیزومتری و همچنین عوامل موثر بر کیفیت آب (EC , SAR) مورد استفاده ...
full textمقایسه روش های شبکه عصبی بیزین و شبکه عصبی مصنوعی در تخمین رسوبات معلق رودخانه ها (مطالعه موردی: سیمینه رود)
زمینه و هدف: شبیه سازی و ارزیابی آورد رسوب رودخانه از جمله مسایل مهم در مدیریت منابع آب می باشد. اندازه گیری مقدار رسوب به روش های متداول عموماً مستلزم صرف وقت و هزینه زیادی بوده و گاهی از دقت کافی نیز برخوردار نمی باشد. روش بررسی: در این پژوهش تخمین رسوب رودخانه سیمینه رود واقع در استان آذربایجان غربی، با استفاده از شبکه عصبی بیـزین مورد بررسی قرار گرفته و نتایج آن با روش های مرسـوم هوشمند هم...
full textارزیابی عملکرد روشهای زمینآمار و شبکه عصبی مصنوعی در تخمین پارامترهای کیفی آبخوان (مطالعه موردی: دشت قروه- دهگلان)
Selection of optimum interpolation technique to estimate water quality parameters in unmeasured points plays an important role in managing the quality and quantity of water resources. The aim of this study is to evaluate the accuracy of interpolation methods using GIS and artificial neural network (ANNs) model. To this end, a series of qualitative parameters of samples from water taken from Deh...
full textکاربرد سنجش از دور و شبکه عصبی مصنوعی در تخمین غلظت رسوب معلق رودخانه (مطالعه موردی: رودخانه کارون)
Spectral Reflectance of suspended sediment concentration (SSC) remotely sensed by satellite images is an alternative and economically efficient method to measure SSC in inland waters such as rivers and lakes, coastal waters, and oceans. This paper retrieved SSC from satellite remote sensing imagery using radial basis function networks (RBF). In-situ measurement of SSC, water flow data, as well ...
full textکاربرد شبکه های عصبی مصنوعی در تخمین مصرف انرژی فضاهای آموزشی
تاکنون توصی ههای دقیقی برای مهندسان معمار جهت تعیین ابعاد مناسب پنجره با رویکرد کاهش مصرف انرژی برای فضاهایآموزشی ارائه نشده است. برای آنکه طراحان فضاهای آموزشی ب هدوراز محاسبات هزین هبر و وق تگیرِ شبیه سازی انرژی قادر بهتعیین سطح مناسب پنجره و یا حداقل اولویت بندی گزین ههای ممکن نورگیری باشند، در تحقیق حاضر بر پایه هوش مصنوعیساختاری جدید ارائه شده است که م یتواند هزینه انرژی را در مدت بهر هبردا...
full textMy Resources
Save resource for easier access later
Journal title:
فصلنامه علوم و تکنولوژی محیط زیستPublisher: دانشگاه آزاد اسلامی واحد علوم و تحقیقات
ISSN 1563-4809
volume 15
issue 1 2013
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023